
IEEE VENUE HERE 1

MIMO FOR MATLAB: A Toolbox for Simulating
MIMO Communication Systems

Ian P. Roberts

Abstract—We present MIMO FOR MATLAB (MFM), a soft-
ware package for MATLAB that aims to simplify the simulation
of multiple-input multiple-output (MIMO) communication sys-
tems research while facilitating reproducibility, consistency, and
community-driven customization. MFM offers users an object-
oriented solution for simulating a variety of MIMO systems
including conventional sub-6 GHz, massive MIMO, millimeter
wave, and terahertz communication. Out-of-the-box, MFM sup-
plies users with a variety of widely used channel and path loss
models from academic literature and cellular and local area net-
work standards; if a particular channel or path loss model is not
provided by MFM, custom models can be created and integrated
by following a few simple rules. The complexity and overhead
associated with simulating networks of multiple devices can be
severely lowered with MFM versus raw MATLAB code, especially
when users want to investigate various channel models, path
loss models, precoding/combining schemes, or other system-level
parameters. MFM’s heavy-lifting to automatically collect and
distribute channel state information, compute interference, and
report performance metrics relieves users of otherwise tedious
tasks and instills confidence and consistency in the results of
simulation. The use-cases of MFM vary widely from networks of
hundreds of devices; to simple point-to-point communication; to
serving as a channel generator; to radar, sonar, and underwater
acoustic communication.

I. INTRODUCTION

Research and education on multiple-input multiple-output
(MIMO) communication systems are built on linear equations
of the form

ŝ =
√
Ptx ·G ·W∗HFs+W∗n (1)

sometimes termed “symbol-level” or “single-letter” formula-
tions. To communicate a symbol vector s over some channel
matrix H, a transmitter with power Ptx applies a precoding
matrix F while a receiver applies a combining matrix W to
recover an estimate of the symbol vector ŝ. Along the way,
path loss 1/G2 weakens the transmitted signal and additive
noise n further corrupts the received signal. While these linear
models greatly simplify the sophistication of today’s commu-
nication systems, simulating MIMO concepts and research can
become prohibitively complex and overwhelming when the
system and/or network grow to even a moderate size.

This has motivated us to create MIMO FOR MATLAB
(MFM)1, a toolbox for simulating MIMO communication

I. P. Roberts is with the Wireless Networking and Communications Group at
the University of Texas at Austin, Austin, Texas, USA. Corresponding author:
I. P. Roberts (ipr@utexas.edu). Last updated: January 21, 2021.

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-
1610403. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

1Available online at https://mimoformatlab.com.

Fig. 1. A network of eight devices scattered in space simulated in MFM.
Four transmit-receive pairs (shown as ×’s and ◦’s, respectively) use the same
time-frequency resources in their attempt to individually communicate. In
this context, the blue transmit-receive pair is considered the “desired” link
while the other three links are considered interference. The transmit signal
from each of the three transmitting interferers (red ×’s) plagues the desired
receiver (blue ◦) with interference.

systems. MFM is written in an object-oriented fashion and
comes with a collection physical layer tools including a variety
of channel models, transmitters, receivers, and antenna arrays
that can be used for sub-6 GHz, millimeter wave (mmWave),
terahertz (THz), and beyond.

MFM has support from the antenna/spatial domain all the
way up to a network of users. By design, MFM has been
created to be used at any level within its capabilities. For
instance, MFM can be used at its lowest level for antenna
array research, as a channel simulator, or as a path loss
simulator. At its highest level, MFM can be used to simulate a
network of many users and automatically compute effects they
have on each other due to interference. In between, a simple
point-to-point communication link can be simulated, allowing
users to develop, implement, and evaluate novel precoding and
combining schemes.

A. Modern Communication Systems Support

MFM supports conventional fully-digital MIMO
transceivers, such as those typical in sub-6 GHz systems.
Next-generation communication systems—such as massive
MIMO, mmWave, and THz communication—rely on
hybrid digital/analog beamforming. MFM supports hybrid
digital/analog transceivers out-of-the-box and includes



IEEE VENUE HERE 2

channel and path loss models for simulating tomorrow’s
systems. Moreover, it supports fully-connected and arbitrary
partially-connected hybrid beamforming architectures, such
as sub-array architectures. In addition, MFM captures phase
shifter resolution and attenuator resolution (if desired) that
exists digitally-controlled analog beamforming networks;
infinite resolution (e.g., analog-controlled) phase shifters and
attenuators can also be implemented if desired.

B. A Common Object-Oriented Framework

By using MFM as a common framework across the research
community, researchers can share their MFM scripts and
objects to facilitate reproducibility, broadening the impact of
their work, and instilling confidence in their results. Thanks to
its object-oriented design, MFM objects created by users can
easily be easily shared and implemented across the research
community. The network from a user’s MFM simulation,
for example, can easily be shared by simply exporting the
simulation’s network object. Arrays, transmitters, and receivers
can be created, for instance, to model (to a degree) their
practical counterparts and can then likewise be shared across
the community.

C. Customization and Expansion

Through its object-oriented design, MFM was designed to
accommodate customizations and expansions that a user sees
fit. For example, if a particular channel model that a user
needs is not provided in MFM, users can create their own
by following a few simple rules. Once created, the custom
channel model can be easily shared and then incorporated into
MFM by others across the research community. If particular
customizations/additions to MFM are widely used, there are
avenues for them to be incorporated into future versions of
MFM.

D. Computation of Performance Metrics

System performance can be evaluated automatically by
MFM behind-the-scenes. Metrics such as mutual information
and symbol estimation error are computed by MFM and its
ability to aggregate contributions of interference network-
wide.

E. Beyond the Physical Layer

While MFM currently only executes communication sys-
tems at the physical layer, its framework facilitates other areas
of research. For example, research on scheduling or stochastic
geometry can leverage MFM’s abstraction and handling of the
physical layer implementations, allowing such users to focus
solely on the scope of their research without the headache of
implementing physical layer communication network-wide.

F. Resources and Documentation

MFM has been extensively documented online at
https://mimoformatlab.com. Where possible,
mathematical descriptions of MFM’s components and

functions have been provided. In addition, a collection of
video tutorials have been published to YouTube and included
on the MFM website. A variety of example scripts are
included with MFM, all of which have companion video
tutorials and written guides, to help acquaint users with
typical MFM usage at its different levels. The resources and
documentation surrounding MFM will continue to grow.

G. Citing MFM

We are interested in tracking the reach it has and applica-
tions it serves to better improve MFM in the future. If you use
MFM, please cite this paper and also the package itself using

@misc{mfm,
author = {Ian P. Roberts},
title = {{MIMO} for {MATLAB}: A

Toolbox for Simulating
{MIMO} Communication
Systems in {MATLAB}},

howpublished =
{\url{http://mimoformatlab.com}},

month = nov,
year = 2020

}

II. OVERVIEW

MFM is a collection of MATLAB scripts that can be used
together, to varying degrees, to simulate MIMO communica-
tion systems. The MFM framework simplifies generating chan-
nels/network realizations, executing precoding and combining
strategies, and evaluating communication system performance.
With MFM, users can focus their attention on the aspects
of MIMO communication that are relevant to them since
MFM can handle the rest. For example, users interested in
creating MIMO precoding and combining strategies may want
to examine their strategies across many channel and path loss
models. MFM can enable such by providing a collection of
common channel and path loss models, which can be used
interchangeably network-wide with ease. In addition, MFM’s
heavy-lifting can relieve users of the headache associated with
tasks such as computing interference and collecting channel
state information, which grow daunting and overwhelming
with networks of moderate size.

A. Objects

MFM was created in an object-oriented fashion, and thus,
its power lay in its objects summarized as follows:

• The array object is used to represent antenna arrays.
Antenna arrays in MFM can be constructed as uniform
linear arrays (ULAs), uniform planar arrays (UPAs), or
any other arbitrary array the user wishes.

• The channel objects represent over-the-air channels
between transmit antennas and receive antennas. MFM
supplies users with a collection of widely used channel
models and supports user creation of models not included
out-of-the-box.



IEEE VENUE HERE 3

• The path_loss objects represent over-the-air path loss
experienced by a signal propagating from a transmitter to
a receiver. Like the channel models, MFM supplies users
with a collection of widely used path loss models and
supports the creation of additional ones.

• The transmitter object is used to
represent a fully-digital MIMO transmitter. The
transmitter_hybrid object is used to represent
a hybrid digital/analog MIMO transmitter. Precoding,
applying a transmit power, and ultimately transmitting
a symbol vector are all the responsibility of the
transmitter and transmitter_hybrid objects.

• The receiver object is used to represent a fully-digital
MIMO receiver. The receiver_hybrid object is
used to represent a hybrid digital/analog MIMO receiver.
Combining, introducing additive noise, and ultimately
estimating a symbol vector are all the responsibility of
the receiver and receiver_hybrid objects.

• The device object represents a wireless terminal that
has transmit and/or receive capability. Those having both
are termed transceivers.

• The link object captures propagation between a trans-
mitting device and a receiving device. A channel
and path_loss objects of a link are used to describe
this propagation. Since link objects connect device
objects—rather than transmitter and receiver objects
directly—they actually have a pair of channel objects
and a pair of path_loss objects. One channel-
path_loss pair is for the forward link from the first
device’s transmitter to the second device’s receiver. When
applicable, the second channel-path_loss pair is for
the reverse link from the second device’s transmitter to
the first device’s receiver.

• The network_mfm object is the collection of device
objects and the link objects connecting them.

B. Using MFM

MFM can be thought of as having a four-layer hierarchy
as illustrated by the example in Fig. 2. At the foundation
of MFM are antenna arrays and channels. Antenna arrays
are useful on their own for applications in surrounding array
signal processing. array and channel objects together can
be used for simple channel generation. Moving up a layer,
we have transmitters and receivers, which can be used by
themselves for operations such as precoder power normal-
ization, constraints in analog beamforming, and introducing
additive noise. Up another layer are the device and link
objects, which can be used directly to conveniently simulate
simple systems of up to a few devices. Finally, at the highest
layer of MFM exists the network_mfm object which is used
to aggregate many devices and their links (both desired and
interference). The network_mfm object is particularly useful
in its ability to execute precoding and combining network-
wide, set network-wide channel and path loss models, compute
interference arriving at each receiver, collect and distribute
channel state information, and report performance metrics.

network

device

transmitter

array

link

channel

path loss

device

receiver

array

channel state

information

channel state

information

Fig. 2. Example architecture of an MFM script simulating point-to-point
communication between a transmitting device and receiving device.

C. Notes on Object-Oriented Programming in MATLAB

Since MFM is object-oriented, it is important to understand
some basic concepts of object-oriented programming in MAT-
LAB, which has similarities to other languages like Python.
Each object’s methods are either “static” or “ordinary”. Static
methods are those that can be called without needing an
instance of the object; in other words, they do not take the
object as an input argument. Ordinary methods, which are far
more common in MFM than static methods, are called on an
instance of the object, meaning they require the object as an
input argument.

It is very important that users of MFM understand how
MATLAB copies objects and passes them functions. In gen-
eral, MATLAB copies objects so-called “by reference”, where
assignment of a variable as an existing object does not create
a new object but rather a reference to it. Changes made to the
object will be reflected in both the “original” object and its
reference. In some cases, MFM will copy the object so-called
“by value”, where the copied object is identical to the existing
one (at the time of copying) but does not have any underlying
reference/connection, meaning changes can be made to one
without affecting the other. To copy objects by value, MFM
has included the function val = copy_object(obj),
which returns a copy of obj by value in val. Note that
everything within obj is copied by value, meaning any of
its properties that may be objects are also copied by value.

D. Downloading and Setting Up MFM

The latest version of MFM can be cloned via Git using

git clone git@gitlab.com:iprnq9/mfm.git

or downloaded directly from its GitLab page2. Once down-
loaded, to begin using MFM, simply open MATLAB, navigate
to within the mfm/ directory, and execute mfm.setup() in
the command window.

E. Important Conventions and Practices

To improve consistency, MFM employs several conventions
and practices, which we summarize as follows:

• All angular values are in radians.

2https://gitlab.com/iprnq9/mfm



IEEE VENUE HERE 4

x

z

yθ

φ

b
(x, y, z)

r

Fig. 3. The 3-D geometry conventions used by MFM.

• All functions and variables are in so-called “snake case”.
• Object functions commonly start with set_, get_,
check_, show_, enforce_, and compute_.

As described by Fig. 3, MFM uses an azimuth-elevation
convention to describe directions in 3-D. MFM defines
azimuth—typically referred to as θ—as the angle from the
y-axis to the projection of the vector of interest onto the x-
y plane. Azimuth angles range from −π to π. Elevation—
typically reffered to as φ—is defined as the angle from the x-
y plane to the vector of interest. Elevation angles range from
−π/2 to π/2.

Explicitly, the 3-D geometry can be summarized as follows,
where r is the radial distance, θ is the azimuth angle, and φ
is the elevation angle. A vector of length r in the azimuth-
elevation direction (θ, φ) can be converted to Cartesian com-
ponents (x, y, z) as

x = r sin θ cosφ (2)
y = r cos θ cosφ (3)
z = r sinφ (4)

A vector having Cartesian components (x, y, z) can be
described as having length r in the azimuth-elevation direction
(θ, φ) via

r =
√
x2 + y2 + z2 (5)

θ = arctan

(
x

y

)
(6)

φ = arctan

(
z√

x2 + y2

)
(7)

F. Documentation

The entire MFM toolbox has been documented inline,
meaning users can leverage MATLAB’s help command to
learn more about a function or object. The inline docu-
mentation for each function, for example, includes a de-
scription of the function, example usage, input arguments,
return values, and function notes. In addition, documentation

Fig. 4. A 4× 8 UPA created in MFM.

for the entire MFM package along with examples, how-
to’s, and clarifying remarks are available on its website
https://mimoformatlab.com.

III. ARRAY OBJECT

The array object, as one may expect, is at the core of
MFM. Arrays can be constructed in a few different ways:

• a = array.create() creates an empty array with
no elements, after which elements can be added to the
array.

• a = array.create(N,ax) creates a half-
wavelength, ULA with N elements where ax is
either ’x’ (default), ’y’, or ’z’ specifying which axis
to create the ULA along.

• a = array.create(M,N,plane) creates a half-
wavelength, UPA with M rows of N elements where
plane is either ’xz’ (default), ’xy’, or ’yz’ speci-
fying which plane to create the UPA in.

A. Viewing the Array

The elements of an array a can be viewed in 2-D using
a.show_2d() or a.show_2d([],plane) where plane
is either ’xz’ (default), ’xy’, or ’yz’ specifying which
plane to show. Its elements can also be viewed in 3-D using
a.show_3d() as was used in Fig. 4.

As evidenced by Fig. 4, the location of an array’s elements
are defined in units of carrier wavelengths. This is attributed
to the fact that an array’s behavior and characterization are
(mostly3) described by its geometry relative to carrier wave-
length. This convenience makes the antenna arrays in MFM
agnostic to carrier wavelength.

B. Modifying an Array

The array object comes with several useful functions for
modifying the array after it has been created. To simulate
a typical MIMO communication system, creating an array

3Wideband array behavior may be included in future additions to MFM.



IEEE VENUE HERE 5

using the ULA or UPA method will often suffice, without
significant modifications. MFM, however, does give users the
ability to modify the array in various ways, which may be
particularly useful when using the array object on its own
or in settings not strictly related to MIMO (e.g., array signal
processing, radar, sonar).

1) Adding Elements: To add elements to an antenna array
a, one can use a.add_element(x,y,z), where x, y, and
z are vectors of x, y, and z coordinates (in wavelengths) for
each element to be added.

2) Removing Elements: To remove elements individually,
one can use a.remove_element(idx), where idx is the
index of the element to be removed; if idx is not passed, the
last element of the array will be removed.

3) Translating the Array: To translate the array in space by
some x, y, and z (in wavelengths), one can use

a.translate(x,y,z)

If no arguments are passed, then a.translate() will
center the array at the origin.

4) Rotating the Array: To rotate the array along the x, y,
and z axes by some theta_x, theta_y, and theta_z
radians, respectively, one can use

a.rotate(theta_x,theta_y,theta_z)

C. Array Response

Some array configurations—such as half-wavelength uni-
form linear and planar arrays—have well-known expressions
for their response as a function of direction. While such array
configurations also happen to be the most commonly used,
MFM supports arbitrary antenna arrays. In other words, MFM
does not restrict the type of arrays a user can construct. To do
so, MFM computes the array response numerically based on
the relative positioning of the array elements. MFM uses the
convention that the array response is of the form as follows.

The relative phase shift experienced by the i-th array
element located at some (xi, yi, zi) from the origin due to
a plane wave in the direction (θ, φ) is

ai (θ, φ) = exp

(
j · 2π

λ
· ζ (xi, yi, zi, θ, φ)

)
(8)

where λ is the carrier wavelength and

ζ (x, y, z, θ, φ) = x sin θ cosφ+ y cos θ cosφ+ z sinφ (9)

Instead of referencing the true origin (0, 0, 0) to compute
the array response, MFM refers the location of each antenna
element to that of the first element in the antenna array. Thus,
the array response vector is constructed by collecting the
relative phase shift seen by each of the array’s Na elements
as

a (θ, φ) =




a1 (θ, φ)
a2 (θ, φ)

...
aNa (θ, φ)


 ·

1

a1 (θ, φ)
(10)

While MFM could use the true origin (0, 0, 0) as the relative
origin, this would require the array to have knowledge of its

b

b

b

(θ, φ)

a(θ, φ)

a1(θ, φ)

aN (θ, φ)

b

b

b

︸ ︷︷ ︸

Fig. 5. The array response.

b

b

b

(θ, φ)

w1

wN

aw(θ, φ)

aN (θ, φ)

a1(θ, φ)

︸︷︷︸
w

b

b

b

aN (θ, φ) · wN

a1(θ, φ) · w1

︸ ︷︷ ︸

Fig. 6. The weighted array response.

location in 3-D space; to make the array object agnostic of
such, we have chosen this convention. This merely shifts each
transmit/receive signal across antennas by the same amount
and does not disturb the underlying importance of the array
response itself: the relative phase shifts across antennas.

The array response of an array a in a particular azimuth θ
and elevation φ can be obtained via

v = a.get_array_response(theta,phi)

D. Array Weights and Beamforming

To weight the Na elements of an antenna array a, one
can use a.set_weights(w), where w is a vector of Na

complex weights. With these weight applied, the weighted
array response aw(θ, φ) defined as

aw(θ, φ) =




a1 (θ, φ) · w1

a2 (θ, φ) · w2

...
aNa

(θ, φ) · wNa


 ·

1

a1 (θ, φ)
(11)

can be obtained via

v = a.get_weighted_array_response(az,el)

Note that the weights contained in w are applied as is
and are not conjugated beforehand. This can be described
mathematically by stating that the gain of an array with
weights w in the direction (θ, φ) is

g (θ, φ) = wTa (θ, φ) (12)



IEEE VENUE HERE 6

Fig. 7. The azimuth and elevation array patterns of a 4×8 UPA. As expected,
the azimuth pattern is sharper given the UPA has twice as many elements
horizontally as it does vertically.

where (·)T denotes transpose (not conjugate transpose). There-
fore, to so-called conjugate beamform (i.e., matched filter)
in the direction of (θ, φ), one would take w = a (θ, φ)

c,
where (·)c denotes element-wise conjugation. To achieve this
in MFM, this would simply be

v = a.get_array_response(theta,phi)
w = conj(v)
a.set_weights(w)

To evaluate the gain achieved by a weighted array a in the
direction (theta,phi), one could use the following.

a.get_array_gain(theta,phi)

As will be discussed, the precoding and combining executed
by MFM does not use this beamforming feature of array ob-
jects, even hybrid digital/analog precoding and combining ar-
chitectures. Instead, MFM executes precoding and combining
at the transmitter and receiver objects, respectively.

E. Plotting the Array Pattern

An extremely convenient feature of the array object in
MFM is its plotting functionality. Once an array a is created,
its array pattern can be viewed in a variety of ways. A few
particularly useful ways are:

• a.show_array_pattern() displays the array’s
magnitude and phase responses as a function of azimuth
and elevation angles in each of their respective cuts.

• a.show_polar_array_pattern_azimuth()
displays the array’s magnitude response in polar form as
a function of azimuth angle at an elevation angle of 0.

• a.show_polar_array_pattern_elevation()
displays the array’s magnitude response in polar form as
a function of elevation angle at an azimuth angle of 0.

F. Important Conventions

Note that MFM uses the receive array response convention,
as evidenced by the positive j term rather of a negative one
in (8). Users should be cautious of this if using the array
object outside of MFM. In addition, it should be noted that
MFM does not normalize the array response vector to unit
norm, as is sometimes convention. This choice was made
to accurately capture the physical meaning behind the array
response induced by a planar wave front.

IV. CHANNEL OBJECTS

The channel objects in MFM are used to capture the over-
the-air mixing that takes place across transmit antennas and
receive antennas, leading to a channel matrix H. Following
convention in MIMO literature, channel matrices H in MFM
are always of size Nr × Nt, where Nr antennas are at the
receiver and Nt antennas are at the transmitter. Currently,
MFM only supports these frequency-flat channels but work
is ongoing to extend its support to frequency-selective ones.
It is important to keep in mind that while MFM has MIMO
in its name, it also supports single-input single-output (SISO)
scenarios to an extent, particularly in regards to some channel
models (e.g., the Rayleigh-faded channel).

A. Provided Channel Models

MFM currently provides the following common channel
models out-of-the-box, making it convenient for users to
generate model-based channel matrices.

1) Rayleigh-Faded Channel: A Rayleigh-faded channel can
be created via c = channel.create(’Rayleigh’),
whose entries are drawn from a standard complex Normal
distribution, described as

[H]i,j ∼ NC (0, 1) ∀ i, j (13)

2) LOS Channel: A far-field line-of-sight (LOS)
channel, comprised of a single, direct path between
a transmitter and receiver, can be constructed via
c = channel.create(’LOS’).

H = β · arx (AoA)atx (AoD)
∗ (14)

3) Rician Channel: A Rician-faded channel can be con-
structed via c = channel.create(’Rician’), which
can be described as the mixture between a LOS channel HLOS

and a Rayleigh-faded channel HRay via

H =

√
κ

κ+ 1
HLOS +

√
1

κ+ 1
HRay (15)

where the Rician factor κ captures the amount of power in the
LOS portion relative to the Rayleigh-faded portion.

4) Ray/Cluster Channel: A ray/cluster channel, com-
prised of clusters of discrete rays, can be constructed via
c = channel.create(’ray-cluster’).

H =

√
1

NrayNcl

Nray∑

u=1

Ncl∑

v=1

βuvarx (AoAuv)atx (AoDuv)
∗

(16)



IEEE VENUE HERE 7

5) Spherical-Wave Channel: A spherical-
wave channel, often used to represent ideal
near-field propagation, can be constructed via
c = channel.create(’spherical-wave’).

[H]v,u =
γ

ru,v
exp

(
−j2π ru,v

λ

)
(17)

where ru,v is the distance between the u-th transmit antenna
and the v-th receive antenna, λ is the carrier wavelength, and γ
ensures that the channel is normalized such that E

[
‖H‖2F

]
=

NtNr. Note that this near-field model is deterministic for a
given relative transmit-receive array geometry.

B. Setting the Propagation Velocity

The propagation velocity, often taken to be 3× 108 m/s for
electromagnetic propagation, can be set using

c.set_propagation_velocity(vel)

where vel is the propagation velocity (in m/s). While MFM
was created for conventional electromagnetic-based wireless
communication, affording users the ability to set the propa-
gation velocity may lend MFM support to other fields such
as underwater acoustic communication where the propagation
velocity of sound in the ocean is often taken to be around
1.5× 103 m/s, for example.

C. Setting the Carrier Frequency

The carrier frequency of the signals propagating through a
channel are set using

c.set_carrier_frequency(fc)

where fc is the carrier frequency (in Hz). Setting the carrier
frequency will automatically compute the carrier wavelength
according to the propagation velocity.

D. Setting the Transmit and Receive Arrays

Informing channel objects of the transmit and receive
arrays informs MFM of the size of the channel matrix and
also provides geometric channel models—such as the LOS
channel and ray/cluster channel—with the array responses
automatically. To do this, simply use

c.set_arrays(array_transmit,array_receive)

where array_transmit and array_receive are the
transmit and receive array objects, respectively.

E. Enforcing a Strict Channel Energy Normalization

Since the energy that a channel matrix is normalized
to can distort interpretations and conclusions drawn when
considering values such as large-scale signal-to-noise ratio
(SNR), it is common to normalize the energy of a channel
matrix on average or on each realization. MFM supports the
latter, normalizing each channel matrix realization to a fixed
energy (squared Frobenius norm), whereas normalizing the
channel energy on average is left up to each specific channel

implementation. However, it should be noted that all channels
in MFM are normalized such that

E
[
‖H‖2F

]
= Nt ·Nr (18)

Users can scale the realizations accordingly if they desire a
different average energy normalization.

To enforce a strict channel energy normalization for each
realization, MFM’s channel objects are all equipped with
the following.

c.set_force_channel_energy...
_normalization(force)

where force is true to force energy normalization and
false to not. By default, this will force each channel matrix
H to be normalized such that

‖H‖2F = Nt ·Nr (19)

To change the value that the energy of the channel realizations
are normalized to, simply use

c.set_normalized_channel_energy(val)

where val is the energy that the channel will be normalized
to (instead of Nt ·Nr).

F. Channel-Specific Setup

Setting the propagation velocity, carrier frequency, transmit
and receive arrays, and energy normalization is common across
all channel models. Beyond this, the setup associated with each
channel is unique. For example, setting the Rician factor κ is
necessary in the Rician channel but not other channels. For a
complete overview of each channel and its setup, please refer
to the MFM website and additional resources.

G. Invoking a Channel Realization

Once a channel object c has been created and properly
set up, a realization of the channel is merely one line of code.

H = c.realization()

This is especially convenient for Monte Carlo simulations,
where channel realizations are placed within a loop, as below.

for i = 1:N
...
H = c.realization()
...

end

Any stochastics associated with the channel model will be
redrawn from their respective distributions when constructing
the channel matrix on each realization.

H. Creating Custom Channel Models

Users can create custom channel models as needed but are
required to follow a few guidelines to ensure they integrate
with the rest of MFM. First and foremost, any custom channel
must be a child of the channel object. This is achieved by
defining the custom channel object in the following fashion.



IEEE VENUE HERE 8

classdef channel_my_custom < channel
...

end

Custom channel objects should have names beginning with
channel_ and should be placed in the obj/channels/
directory. To avoid issues, custom channel objects should avoid
creating functions that supersede those found in the parent
channel object. Recall that functions and properties of the
channel object will be inherited by its subclasses. A custom
channel object must contain a realization() function
definition as follows.

function H = realization(obj)
H = ... % realization definition
obj.set_channel_matrix(H)
H = obj.get_channel_matrix()

end

Once a custom channel has been made, it can be created via

c = channel_my_custom()

and can be used throughout MFM like any of the provided
channel models. Note that a custom channel’s setup should
involve setting the propagation velocity, carrier frequency, and
transmit and receive arrays, like all other channel models;
these setup functions are inherited from the channel object.
If interested in extending the channel.create() function
with a custom string specifier for your custom channel (e.g.,
c = channel.create(’custom’)), please see visit the
MFM website.

V. PATH LOSS OBJECTS

Referencing the linear MIMO formulations of (1), MFM
uses path_loss objects to handle the large-scale gain G
between two devices. With deterministic path loss models,
such as the classical Friis path loss formula, G can be
calculated directly. With stochastic path loss models, such
as those involving shadowing, G may depend on a random
variable(s). MFM provides users with a variety of deterministic
and stochastic path loss models and supports the ability for
users to create their own custom path loss model.

A. Default Properties and Setup

To supply all path loss models with common parameters,
each path loss model in MFM has the following properties
that can be set as follows.

• The carrier frequency used by a path_loss object p
can be set via p.set_carrier_frequency(fc).

• The propagation velocity can be set via
p.set_propagation_velocity(vel).

• The carrier wavelength used by a path_loss object is
set automatically when setting the carrier frequency and
propagation velocity.

• The distance of the path can be set via
p.set_distance(d).

Fig. 8. Free-space path loss for η = 2, 3, 4.

B. Provided Path Loss Models

• path_loss.create(’FSPL’) creates an object
capturing free-space path loss described as

G2 =

(
λ

4π

)2

×
(
1

d

)η
(20)

where λ is the carrier wavelength, d is the dis-
tance of the path, η is the path loss exponent, and
1/G2 is the power loss of the path. When users
set η = 2, this resorts to the classical Friis path
loss formula. The path loss exponent can be set via
p.set_path_loss_exponent(eta).

• To incorporate log-normal shadowing into the free-space
path loss model, the following can be used
p = path_loss.create(’FSPL+LNS’)

which implements the following

G2 =

(
λ

4π

)2

×
(
1

d

)η
× γ (21)

where 10 · log10 (γ) ∼ N
(
0, σ2

γ

)
captures

log-normal shadowing. The log-normal
shadowing variance σ2

γ can be set via
p.set_log_normal_shadowing_variance(s).

• The two-slope path loss model described as

1

G2
=




L0 ×

(
d
d0

)η1
, d ≤ d0

L0 ×
(
d
d0

)η2
, d > d0

(22)

can be created via path_loss.create(’two-slope’).
Here, L0 is the path loss at some reference distance
d0; within d0, a path loss exponent of η1 is used and
beyond d0, a path loss exponent of η2 is used. To set
these parameters, use
p.set_reference_distance(d0)
p.set_reference_path_loss(L0,’dB’)
p.set_path_loss_exponents(ple_1,ple_2)



IEEE VENUE HERE 9

Fig. 9. Two-slope path loss where d0 = 10 meters, L0 = 80 dB, η1 = 2,
and η2 = 4.

√
Ptx

b

b

b
x

s F

Fig. 10. A fully-digital transmitter applies a precoder F and a transmit gain√
Ptx to a symbol vector s to transmit a vector x.

C. Invoking a Path Loss Realization

Once a path_loss object p has been setup appropriately,
the resulting path loss can be obtained via

L = p.realization()

where L is the linear power loss of the path. When p is
a deterministic path loss model, L will not vary with each
realization. When p is a stochastic path loss model, L will
vary with each realization according to the underlying model.

VI. TRANSMITTER OBJECTS

A transmitter in MFM is captured by the transmitter
object and its subclasses. A transmitter can be created
via

tx = transmitter.create()

By default, a transmitter object employs fully-digital
precoding. However, as we will discuss, MFM also supports
hybrid digital/analog precoding. The symbol vector departing
a fully-digital transmitter follows the form

x =
√
Ptx · Fs (23)

where Ptx reflects the transmit power applied to a symbol
vector s having undergone precoding by a matrix F. The main
properties of a transmitter include:

• antenna array
• transmit power (i.e., Ptx ·B)

• precoding matrix (i.e., F)
• precoding power budget
• transmit symbol (i.e., s)
• channel state information
• symbol bandwidth (i.e., B)

A transmitter’s properties can be set using its various
set commands.

A. Setting the Array

The antenna array at a transmitter object tx is set via

tx.set_array(a)

where a is an array object.

B. Setting the Transmit Power

The transmit power at a transmitter object tx is set
via

tx.set_transmit_power(P)

where P is the transmit power in watts or

tx.set_transmit_power(P,’dBm’)

where P is the transmit power in dBm. Note that this transmit
power has units of energy per time, meaning this is not the
transmitted “power” per symbol. In other words, this P 6= Ptx.
Rather, Ptx is the transmitted energy per symbol. Linking
transmit power (energy per time) and energy per symbol is
the symbol period (or bandwidth).

Let B be the symbol bandwidth and T = 1/B be the symbol
period. A transmit power of P watts (joules per second) is
related to the transmit energy per symbol Ptx via

Ptx = P × T = P ×B−1 (24)

To set the transmit energy per symbol directly, users can set
the transmit power to Ptx and the symbol bandwidth to B = 1,
for example.

C. Setting the Symbol Bandwidth

To set the symbol bandwidth at a transmitter object
tx, use

tx.set_symbol_bandwidth(B)

This will automatically update the symbol period accordingly.

D. Setting the Number of Streams

The number of symbol streams transmitted by tx is set via

tx.set_num_streams(Ns)

where Ns is the number of streams per transmit symbol vector.

E. Setting the Transmit Symbol

The transmit symbol vector s at a transmitter object
tx is set via

tx.set_transmit_symbol(s)

where s is an Ns × 1 symbol vector.



IEEE VENUE HERE 10

F. Setting the Transmit Symbol Covariance

The transmit symbol covariance matrix defined as

Rs = E [ss∗] (25)

is automatically set based on the number of transmit streams
Ns as

Rs =
1

Ns
· I (26)

The transmit symbol covariance matrix can be set manually
using

tx.set_transmit_symbol_covariance(Rs)

where Rs is the covariance matrix of appropriate size (Ns ×
Ns). It should be known, however, that the transmit symbol
covariance is not tied to the actual transmit symbols in any
way in MFM. The transmit symbol covariance is merely used
for computing quantities such as mutual information. It is up
to the user to ensure that the symbols they transmit follow
whatever symbol covariance they intend.

G. Setting a Precoding Power Budget

To limit the power associated with precoding, MFM sup-
ports a precoding power budget, which takes on the form

‖F‖2F ≤ E (27)

where E is the precoding power budget. While it is common
to take E = 1 or E = Ns along with other normalizations as
appropriate to ensure the maximum average energy transmitted
per symbol is in fact no more than Ptx, MFM supports
customizing E as desired. By default, MFM sets the precoding
power budget to E = Ns to ensure that the set transmit power
holds when E [ss∗] = 1/Ns · I.

H. Setting the Precoder

Setting the precoder of a transmitter tx can be achieved in
a few ways in MFM. The most straightforward is to explicitly
set the precoding matrix F using

tx.set_precoder(F)

where F is the Nt × Ns precoding matrix. If the matrix F
does not satisfy the allotted precoding power budget, it will
be normalized to meet it.

I. Setting Channel State Information at the Transmitter

Channel state information can be provided to the transmitter
via

tx.set_channel_state_information(csi)

where csi is a cell of channel state information structs. While
there is no specific definition or format for channel state
information in MFM, the link and network_mfm objects
will set them in particular way that is described later.

√
Ptx

b

b

b
x

s FRFFBB

Fig. 11. A hybrid digital/analog transmitter applies a digital precoder FBB,
an analog precoder FRF, and a transmit gain

√
Ptx to a symbol vector s to

transmit a vector x.

J. Turning off the Transmitter

A transmitter can be “turned off” via

tx.turn_off()

which sets its precoder to a matrix of zeros.

K. Hybrid Digital/Analog Transmitter

MFM supports hybrid digital/analog precoding via its
transmitter_hybrid object, which is a subclass of the
transmitter object, meaning it inherits all of the properties
and functions discussed so far. The symbol vector departing a
hybrid transmitter follows the form

x =
√
PtxFRFFBBs (28)

where digital precoding followed by analog precoding are
applied to symbol vector s as described by Fig. 11.

A hybrid digital/analog transmitter can be created by in-
cluding the ’hybrid’ specifier when creating a transmitter.

tx = transmitter.create(’hybrid’)

L. Setting the Number of RF Chains

The number of radio frequency (RF) chains present in a
hybrid transmitter tx can be set using

tx.set_num_rf_chains(Lt)

where Lt is the number of RF chains.

M. Setting the Connected-ness

Fully-connected hybrid precoding architectures are those
that connect each RF chain to each antenna element, mean-
ing the structure of an analog precoding matrix FRF is
unconstrained. In partially-connected hybrid architectures—
such as sub-array architectures—analog precoding is limited
by the physical connections present in an analog beamform-
ing network. Typically, partially-connected architectures offer
simplicity and cost-savings as compared to fully-connected
architectures. MFM can handle both, partially-connected and
fully-connected hybrid architectures, by allowing users to
specify the connections that are present in their particular
system. This is achieved via

tx.set_precoder_hybrid_connections(M)

where M is an Nt × Lt matrix whose (i, j)-th entry is a
boolean indicating if the j-th RF chain contributes to the i-th
antenna. To capture a sub-array architecture, for instance, M



IEEE VENUE HERE 11

would take on a block-diagonal form, whereas fully-connected
architectures are captured by a matrix M of all ones.

If an analog precoding matrix is set that does not comply
with the connections present in the hybrid transmitter, it will
be forced to by applying the mask M.

N. Setting the Resolution of Phase Shifters and Attenuators

It is common for the entries of the analog precoding matrix,
which is implemented as a physical network of digitally-
controlled phase shifters and possibly attenuators, to be con-
strained to some phase and amplitude resolutions. MFM
accounts for this very important practical constraint by letting
the user specify the number of bits used at each phase shifter
and each attenuator via

tx.set_precoder_analog_phase_resolution
..._bits(bits_phase)
tx.set_precoder_analog_amplitude_resolution
..._bits(bits_amplitude)

MFM assumes that the phase shifter resolution is uniformly
spread over 2π radians. For amplitude resolution, MFM sup-
ports both linear and logarthmic uniform amplitude control to
account for log-stepped digitally controlled attenuators.

To eliminate the presence of amplitude control, users
can set bits_amplitude = 0. To remove the resolution
constraints associated with digitally-controlled phase shifters
and/or attenuators, users can set bits_phase = Inf and
bits_amplitude = Inf, respectively.

O. Setting a Digital Precoding Power Budget

Like the fully-digital precoder F, MFM supports a power
budget placed on the digital precoder FBB of the form

‖FBB‖2F ≤ E (29)

where E is the maximum power the digital precoder can
exhibit. To set this, use

tx.set_precoder_digital_power_budget(E)

P. Setting the Digital and Analog Precoders

There are multiple ways to set the digital and analog
precoders of a hybrid transmitter. The most straightforward
way is to explicitly set them using

tx.set_precoder_digital(F_BB)
tx.set_precoder_analog(F_RF)

where F_BB is the Lt × Ns digital precoding matrix FBB

and F_RF is the Nt × Lt analog precoding matrix FRF.
When setting each, their respective constraints (e.g., digital
precoding power budget, phase shifter and attenuator resolu-
tion, connected-ness) will be enforced. With the digital and
analog precoders set, the effective precoder of the transmitter
is then

F = FRFFBB (30)

which will be reflected in the hybrid transmitter’s inherited
property tx.precoder.

W
+

+

n1

nNr

b

b

b
y

ŝ

Fig. 12. A fully-digital receiver.

Q. Another Way to Set the Precoder(s)

Methods to explicitly set the precoding matrices have been
discussed. However, this is not always a very attractive ap-
proach, especially since it can severely undermine the advan-
tages of MFM’s object-oriented design. This motivates setting
a transmitter’s precoder(s) via

tx.configure_transmitter(strategy)

where strategy is a string specifying the strategy/method
to use when designing the transmitter’s precoder(s).
Based on strategy, the transmitter will refer to its
configure_transmitter_<strategy>() functions.
For example, for eigen-based precoding,

tx.configure_transmitter(’eigen’)

will refer to

tx.configure_transmitter_eigen()

which will use the transmitter’s channel state information to
design its precoder.

This string-based way to specify a transmit strategy is
particularly useful since it keeps main simulation scripts free
of the linear algebra involved in precoder design, allows
users to easily switch between strategies, and makes setting
precoders network-wide much more manageable. Users can
add custom transmit strategies with a few simple steps. Please
refer to the MFM website for more information on doing so.

VII. RECEIVER OBJECTS

A receiver in MFM is captured by the receiver object
and its subclasses. A receiver can be created via

rx = receiver.create()

Like the transmitter, a receiver object employs fully-digital
precoding by default, though hybrid digital/analog receivers
are supported. The estimated symbol vector output by a fully-
digital receiver follows the form

ŝ = W∗(y + n) (31)

where a combining matrix W is applied to the signal vector y
impinging the receive array plus noise n. The main properties
of a receiver include:

• antenna array
• combining matrix (i.e., W)
• receive symbol (i.e., ŝ)
• noise power spectral density (i.e., N0 or σ2

n)
• channel state information
• symbol bandwidth (i.e., B)



IEEE VENUE HERE 12

Like the transmitter, a receiver object’s properties
can be set using its various set commands.

A. Setting the Array, Symbol Bandwidth, and Number of
Streams

The antenna array, symbol bandwidth, and number of
streams can all be set at a receiver object rx in the same
fashion as for the transmitter object.

rx.set_array(a)
rx.set_symbol_bandwidth(B)
rx.set_num_streams(Ns)

B. Setting the Noise Level

MFM models noise as being additive, i.i.d. Gaussian across
receive antennas as shown in Fig. 12. The noise vector n is
drawn from the complex Gaussian distribution as

n ∼ NC
(
0, σ2

n · I
)

(32)

where σ2
n is the average noise energy per symbol (joules). The

noise energy per symbol is equal to the noise power per Hertz
of bandwidth given our symbol period is the inverse of our
symbol bandwidth. To set the noise energy per symbol, then
we can use

rx.set_noise_power_per_Hz(psd)

where psd is the noise power spectral density (in joules per
Hz) or the more convenient

rx.set_noise_power_per_Hz(psd,’dBm_Hz’)

where psd is the noise power spectral density is in dBm/Hz
(e.g., psd = -174). The effective noise power is then the
product of noise power spectral density and symbol bandwidth
as σ2

n ·B, which is not used to generate noise but is convenient
for interpreting link budgets and making the connection from
theory to practice.

C. Setting/Realizing Noise

The noise vector n can be realized using

rx.set_noise()

which will update the property rx.noise with the realized
noise vector. The noise vector can be set manually using

rx.set_noise(n)

where n is an Nr × 1 noise vector.

D. Setting the Received Signal Vector

To set the Nr × 1 received signal vector y that a combiner
observes at its antennas, use

rx.set_received_signal(y)

E. Setting the Combiner

A receiver’s combiner can be set via

rx.set_combiner(W)

where W is an Nr ×Ns combining matrix.

+

+

n1

nNr

b

b

b
y

ŝWRF WBB

Fig. 13. A hybrid digital/analog receiver.

+

+

Lr
...

Lr
...

Lr
... Nr

...

Fig. 14. A fully-connected analog combining network, where each antenna
feeds each RF chain via a phase shifter and attenuator.

F. Getting the Receive Symbol

The Ns × 1 receive symbol ŝ can be retrieved via

s = rx.get_receive_symbol()

which will return the estimated symbol vector based on the
current received signal, combiner, and noise.

G. Hybrid Digital/Analog Receiver

Like with transmission, MFM supports hybrid digital/analog
receivers via its receiver_hybrid object, which is a
subclass of the receiver object, meaning it inherits all of
the receiver properties and functions discussed so far. The
receive symbol output by a hybrid receiver takes the form

ŝ = W∗
BBW

∗
RF(y + n) (33)

where an analog combining matrix followed by a digital
combining matrix are applied to a received signal vector y
plus noise n.

A hybrid receiver can be created by including the
‘hybrid‘ specifier when creating a receiver.

rx = receiver.create(’hybrid’)

H. Setting Hybrid Receiver-Specific Parameters

The settings pertinent to a hybrid digital/analog receiver
can be set with the same functions of a hybrid digital/analog
transmitter. The number of RF chains, connected-ness of the
hybrid receiver, and constraints of analog combining can all be
configured in the same fashion as with the hybrid transmitter.
Please refer to the hybrid transmitter’s documentation and the
MFM website for detailed information.



IEEE VENUE HERE 13

VIII. DEVICE OBJECT

The device object, as its name suggests, represents a
wireless communications terminal such as a user equipment
(UE), base station, and the like. A device object having only
transmit or receive capability will contain a transmitter
or receiver, respectively. A device object that has both
transmit and receive capability—i.e., a transceiver—will be
comprised of both a transmitter and receiver.

An empty device can be created via

d = device.create(type)

where type is either ’transmitter’, ’receiver’, or
’transceiver’ (default).

A device object’s transmitter and/or receiver can
either be digital or hybrid digital/analog. A device object
with fully-digital transmit and receive capability can be created
via

d = device.create(’transceiver’,’digital’)

whereas a device with a hybrid digital/analog transmitter
and receiver can be created via

d = device.create(’transceiver’,’hybrid’)

A. Setting a Device’s Location

A device object d can be placed in 3-D space by setting
its coordinate via

d.set_coordinate(x,y,z)

where x, y, and z are Cartesian coordinates in meters.
The location of the device will be essential for geometry-
dependent path loss and channel models in addition to visu-
alization.

B. Setting the Transmitter and/or Receiver

The transmitter and/or receiver of a device object d can
be set manually if desired via

d.set_transmitter(tx)
d.set_receiver(rx)

C. Setting the Transmit and Receive Arrays

The arrays at a device object d’s transmitter and receiver
can be set using

d.set_arrays(array_transmit,array_receive)

which will set the arrays respectively.

D. Setting the Number of Streams

The number of streams at a device object d’s transmitter
and receiver can be set using

d.set_num_streams(Ns)

which will set the same number of streams at the transmitter
and receiver.

E. Setting the Number of RF Chains

The number of RF chains in a device object d’s hybrid
transmitter and hybrid receiver can be set using

d.set_num_rf_chains(Lt,Lr)

which will set them respectively.

F. Setting the Symbol Bandwidth

The symbol bandwidth at a device object d can be set
using

d.set_symbol_bandwidth(B)

which will set the symbol bandwidth at the device’s transmitter
and receiver to B, also.

G. Interfacing with a Device’s Transmitter and/or Receiver

In many ways, the device object acts as a proxy for
configuring and interfacing with its transmitter and/or receiver.
Thus, the device is supplied with a number of passthrough
functions that make directly interfacing with its transmitter
and/or receiver simpler. Some of the passthrough functions
that exist for the transmitter:

• d.set_transmit_symbol_bandwidth(B)
• d.set_transmit_num_streams(Ns)
• d.set_transmit_symbol(s)
• d.set_transmit_array(a)
• d.set_transmit_num_rf_chains(Lt)
• d.set_transmit_power(P,unit)
• d.set_transmit_symbol_covariance(Rs)

And for the receiver:

• d.set_receive_symbol_bandwidth(B)
• d.set_receive_num_streams(Ns)
• d.set_received_signal(y)
• d.set_receive_array(a)
• d.set_receive_num_rf_chains(Lr)
• d.set_noise(n)
• d.set_noise_power_per_Hz(psd,unit)

H. Setting the Source and Destination

Declaring which other device a given device d should
transmit to (i.e., the destination device) or receive from (i.e.,
source device) can be accomplished via

d.set_destination(dev_1)
d.set_source(dev_2)

where dev_1 is a device with receive capability and
dev_2 is a device with transmit capability. This source-
destination concept is only pertinent to particular use-cases
of MFM, particularly at its link-level and network_mfm-
level, which will be discussed shortly, though also can be used
in scenarios outside of such.



IEEE VENUE HERE 14

transmitter

receiver

device

transmitter

receiver

device

︸ ︷︷ ︸
device A

︸ ︷︷ ︸
device B

link

forward link

reverse link

(head)

channel, path loss

channel, path loss

(tail)

Fig. 15. A link established between two transceivers.

IX. LINK OBJECT

Between any two devices sharing the same radio resources
exists a channel matrix and path loss connecting them. MFM
employs exactly that in its link object used to connect a pair
of device objects, with the caveat that one of the devices
must have transmit capability and the other have receive
capability; otherwise the physical connection (or link) between
the two devices would be immaterial.

Examining our familiar MIMO formulation, we can see that
MFM uses a link to capture the channel matrix H and large-
scale gain G due to path loss.

ŝ = W∗


√Ptx ·G ·H︸ ︷︷ ︸

link

Fs+ n


 (34)

Suppose there exist two devices d1 and d2, where d1 has
transmit capability and d2 has receive capability. Note that
one or both devices could be transceivers. A link connecting
these two devices is created via

lnk = link.create(d1,d2);

By convention, the first device (d1 in this case) is called the
head while the second device (d2) is called the tail. The head
always has transmit capability and the tail always has receive
capability.

Since both d1 and d2 could be transceivers, a link may
exist between the two device objects in both directions, as
illustrated by Fig. 15. We refer to the link from the head to
the tail as the forward link and from the tail to the head as the
reverse link. To handle cases when the forward and reverse
links are symmetric (or reciprocal), a single link object
contains both the forward and reverse links. A link object,
therefore, has two channel objects (a forward channel and
reverse channel) and two path_loss objects (forward path
loss and reverse path loss).

A. Setting the Forward and Reverse Channel Models

The channel models used on the forward and reverse links
of a link object lnk can be set respectively using

lnk.set_channel(chan_fwd,chan_rev)

where chan_fwd and chan_rev are channel objects. To
use the same channel model on the forward and reverse links
(but independent instances of such), use

lnk.set_channel(chan)

Note that these channel objects are deep copied when used
on a particular link meaning the same channel objects
used when configuring multiple link objects if desired.

B. Setting the Forward and Reverse Path Loss Models

The path loss models used on the forward and reverse links
of a link object lnk can be set respectively using

lnk.set_path_loss(path_fwd,path_rev)

where path_fwd and path_rev are path_loss objects.
To use the same path loss model on the forward and reverse
links (but independent instances of such), use

lnk.set_path_loss(path)

Note that these channel objects are deep copied when used
on a particular link meaning the same channel objects
used when configuring multiple link objects if desired.

C. Setting the Forward and Reverse SNR Manually

Following MIMO literature, the so-called large-scale SNR
for a given transmit-receive pair is defined as

SNR =
Ptx ·G2

σ2
n

(35)

The SNR of the forward and reverse links—which need not
be equal—are computed by the link object based on the
realized large-scale gains (i.e., G), transmit power, and noise
level and are stored in the properties

lnk.snr_forward
lnk.snr_reverse

where we have

SNRfwd =
Ptx,head ·G2

fwd

σ2
n,tail

(36)

SNRrev =
Ptx,tail ·G2

rev

σ2
n,head

(37)

Often times, researchers are interested in examining perfor-
mance as a function of SNR. Since MFM uses path loss to
determine the large-scale gain G, it is impractical to expect
researchers to tailor either the path loss model or their devices
location to achieve a desired SNR. Therefore, the link object
supplies users with the functions

lnk.set_snr(snr_fwd,snr_rev,unit)

to automatically adjust the large-scale gain G on each link
to achieve an SNR on the forward link of snr_fwd and on
the reverse link of snr_rev. The unit argument can be
neglected when snr_fwd and snr_rev are in linear units
or can be ’dB’ when they are in units of dB.



IEEE VENUE HERE 15

D. Setting Forward and Reverse Channel Symmetry

In some cases, it may be desired that the forward and reverse
channels are symmetric where the reverse channel matrix is
the conjugate transpose of the forward channel matrix as

Hrev = H∗
fwd (38)

Currently, MFM only supports this case when the number of
transmit antennas and receive antennas are equal at a given
transceiver; this captures most practical cases since channel
symmetry is more likely to hold when the transmit array and
receive array are in reality the same array (as opposed to
separate transmit and receive arrays that therefore may see
different channels).

To set the forward and reverse channels to be symmetric,
simply use

lnk.set_channel_symmetric(true)

which will use the conjugate transpose of realizations from
the forward channel model to set the reverse channel matrix.

E. Setting Forward and Reverse Path Loss Symmetry

In some cases, it may be desired that the forward and reverse
path losses (and therefore large-scale gains Gfwd and Grev) be
symmetric where

Grev = Gfwd (39)

To enforce this in MFM, use

lnk.set_path_loss_symmetric(true)

Note that when the same deterministic path loss model is used
on the forward and reverse links, the forward and reverse path
losses (and thus large-scale gains) will always inherently be
symmetric (e.g., since the separation between the head and
tail devices is equal in both directions). Enforcing path loss
symmetry, therefore, is particularly useful with stochastic path
loss models.

F. Invoking a Link Realization

To invoke a realization of the channel and path loss models
of a link object lnk, simply use

lnk.realization()

To invoke a realization of the channel and path loss models
separately, use

lnk.realization_channel()
lnk.realization_path_loss()

G. Getting the Realized Channel Matrix and Large-Scale Gain

Following the realization of a link object lnk, the result-
ing channel matrix H and large-scale gain G of the forward
and reverse links can be retrieved via

H_fwd = lnk.channel_matrix_forward()
H_rev = lnk.channel_matrix_reverse()
G_fwd = lnk.large_scale_gain_forward()
G_rev = lnk.large_scale_gain_reverse()

H. Computing the Received Signal
Once a link object has been realized (and the devices have

been configured), it is capable of automatically computing the
received signal on the forward and reverse links via

lnk.compute_received_signal()

which will populate the received signal vector y at the tail and
head devices (if applicable).

I. Computing the Link Budget
Once a link has been realized, users can call

[fwd,rev] = lnk.compute_link_budget()

to retrieve two structs containing link budget values (in log-
scale for convenience) for the forward link and reverse link
(if applicable).

J. Computing Channel State Information
Users can fetch channel state information of a realized link

using

[fwd,rev] = lnk.compute_channel_state...
_information()

which returns two structs containing channel state information
for the forward link and reverse link (if applicable).

K. Computing Signal Covariance
Users can fetch the covariance matrices of the received

desired term and of received noise on the forward and reverse
links (if applicable) using

[Ry_fwd,Rn_rev] = lnk.compute_covariance...
_forward()

[Ry_rev,Rn_rev] = lnk.compute_covariance...
_reverse()

where the first return argument of each is the covariance matrix
of the form

E [W∗yy∗W] (40)

and the second return argument of each is the covariance
matrix of the form

E [W∗nn∗W] (41)

Both of these expectations are computed based on the current
precoder-combiner configurations and the covariance matrix
settings at the transmitter and receiver.

L. Reporting the Mutual Information
MFM can automatically compute and report the mutual

information (under Gaussian signaling) based on the current
link state using

mi_fwd = lnk.report_mutual_information...
_forward()

mi_rev = lnk.report_mutual_information...
_reverse()

where the returned value of each is the mutual information in
bits/sec/Hz.



IEEE VENUE HERE 16

M. Reporting the Symbol Estimation Error

MFM can automatically compute and report the symbol
estimation error based on the current link state using

[ef,nf] = lnk.report_symbol...
_estimation_error_forward()

[er,nr] = lnk.report_symbol...
_estimation_error_reverse()

where the first return value of each is the absolute symbol
estimation error

‖ŝ− s‖22 (42)

and the second return value is the symbol estimation error
normalized to the transmit symbol energy defined as

‖ŝ− s‖22
‖s‖22

(43)

X. NETWORK OBJECT

At the highest level of MFM’s object-oriented structure is
the network_mfm object, which houses device objects
and the link objects connecting them. Recall that the link
object represents a physical connection between two devices
rather than a communication link. A network_mfm object
can be created simply via

net = network_mfm.create()

Currently, the network_mfm object in MFM captures sce-
narios where all devices present in the network share the
same radio resources (i.e., same time and frequency resources),
meaning some degree of interference will be inflicted onto
each receiver in the network by each transmitter (except for
those that are turned off).

A. Adding Devices to the Network

Adding a particular device dev to the network can be
achieved via

net.add_device(dev)

B. Adding Source-Destination Pairs to the Network

Suppose we have two device objects dtx and drx, where
dtx is a transmitting device and drx is a receiving device,
both of which have already been set up as necessary. To inform
the network that dtx should transmit to drx and that drx
should receive from dtx, the following command is used

net.add_source_destination(dtx,drx);

which adds dtx and drx as a source-destination pair, dtx
being the source and drx being the destination. There are
multiple ways to add devices to a network; this is merely the
most common.

C. Linking Devices in the Network

To impose a physical connection (i.e., channel and path loss)
between devices, links within the network can be manually
added via

net.add_link(lnk)

where lnk is a link object. With many devices—and there-
fore likely many links—this can be cumbersome. Fortunately,
MFM comes with a more convenient way of automatically
populating links between pairs of devices via

net.populate_links_from_source_destination()

which will populate all links from each source to each desti-
nation. Recall that since all devices in an MFM network share
the same radio resources, each transmitting device will impose
interference on those it does not intend to transmit to.

D. Removing Source-Destination Pairs from the Network

To remove a specific source-destination pair from the net-
work, use

net.remove_source_destination_pair(s,d)

where s and d are device objects to remove. Note that the
pair of devices is removed from the network, not the individual
devices, meaning if either s or d exists in another source-
destination pair, it will remain in the network.

To remove all source-destination pairs from the network,
use

net.remove_all_source_destination()

which does not remove any links from the network.

E. Removing a Device from the Network

Removing a particular device dev from the network can be
achieved via

net.remove_device(dev)

which also removes any links and source-destination pairs
associated with dev.

F. Setting the Channel and Path Loss Models Network-Wide

To specify the channel and path loss models used on all
links in the network, we can invoke

net.set_channel(c)
net.set_path_loss(p)

where c and p are channel and path_loss objects,
respectively.

G. Other Network-Wide Settings

MFM offers the user the convenience of setting various
system parameters network-wide instead of setting them at
each device one-by-one.

net.set_symbol_bandwidth(B);
net.set_propagation_velocity(prop_vel);



IEEE VENUE HERE 17

net.set_carrier_frequency(fc);
net.set_num_streams(num_streams);
net.set_transmit_power(P,’dBm’);
net.set_transmit_symbol(s);
net.set_noise_power_per_Hz(psd,’dBm_Hz’);

H. Viewing the Network

To view a network net in 2-D or 3-D, use

net.show_2d()
net.show_3d()

I. Invoking a Network Realization

Invoking a realization of an entire network net is achieved
with a single line

net.realization()

which realizes all channels and path loss models in the
network.

J. Channel State Information

To collect and distribute channel state information across a
network net, use

net.compute_channel_state_information()
net.supply_channel_state_information()

K. Configuring Transmitters and Receivers Network-Wide

To configure the transmitters and receivers across the net-
work using string-specified transmit and receive strategies, use,
for example,

net.configure_transmitter(’eigen’)
net.configure_receiver(’mmse’)

which transmits using eigen-beamforming and receives in an
minimum mean square error (MMSE) fashion.

L. Computing the Receiving Signals Network-Wide

With a network realized and its devices configured, the
received signals can be computed via

net.compute_received_signals()

which will automatically incorporate interference caused by
other transmitting devices in the network.

M. Reporting the Mutual Information

To report the mutual information (under Gaussian signaling)
achieved between a particular pair of devices dev_1 and
dev_2, use

mi = net.report_mutual...
_information(dev_1,dev_2)

which will automatically incorporate interference caused by
other transmitting devices in the network.

Fig. 16. The spectral efficiency of a point-to-point Rayleigh-faded network
as a function of SNR simulated using MFM.

N. Reporting the Symbol Estimation Error

To report the symbol estimation error achieved between a
particular pair of devices dev_1 and dev_2, use

[err,nerr] = net.report_symbol...
_estimation_error(dev_1,dev_2)

where the first return value err is the absolute symbol
estimation error

‖ŝ− s‖22 (44)

and the second return value nerr is the symbol estimation
error normalized to the transmit symbol energy defined as

‖ŝ− s‖22
‖s‖22

(45)

XI. CONCLUSION

We have presented MFM, a MATLAB framework that can
facilitate accuracy and reproducibility in wireless research.
MFM supplies users with widely used channel and path loss
models out-of-the-box and supports fully-digital and hybrid
digital/analog beamforming. MFM can be used flexibly in
a variety of ways: from low-level uses like antenna ar-
ray design and drawing channel and path loss realizations
to higher-level system simulation. For complete documen-
tation, examples, and guides on using MFM, please visit
https://mimoformatlab.com.


